Project Description
This course contains over 200 lessons, quizzes, practical examples, … – the easiest way if you want to learn Machine Learning.
Step by step I teach you machine learning. In each section you will learn a new topic – first the idea / intuition behind it, and then the code in both Python and R.
Machine Learning is only really fun when you evaluate real data. That’s why you analyze a lot of practical examples in this course:
- Estimate the value of used cars
- Write a spam filter
- Diagnose breast cancer
All code examples are shown in both programming languages – so you can choose whether you want to see the course in Python, R, or in both languages!
After the course you can apply Machine Learning to your own data and make informed decisions:
You know when which models might come into question and how to compare them. You can analyze which columns are needed, whether additional data is needed, and know which data needs to be prepared in advance.
This course covers the important topics:
- Regression
- Classification
On all these topics you will learn about different algorithms. The ideas behind them are simply explained – not dry mathematical formulas, but vivid graphical explanations.
We use common tools (Sklearn, NLTK, caret, data.table, …), which are also used for real machine learning projects.
What do you learn?
- Regression:
- Linear Regression
- Polynomial Regression
- Classification:
- Logistic Regression
- Naive Bayes
- Decision trees
- Random Forest
You will also learn how to use Machine Learning:
- Read in data and prepare it for your model
- With complete practical example, explained step by step
- Find the best hyperparameters for your model
- “Parameter Tuning”
- Compare models with each other:
- How the accuracy value of a model can mislead you and what you can do about it
- K-Fold Cross-Validation
- Coefficient of determination
My goal with this course is to offer you the ideal entry into the world of machine learning.
What will you learn ?
Create machine learning applications in Python as well as R
You will learn Machine Learning clearly and concisely
No dry mathematics – everything explained vividly
You will know when to use which machine learning model
Apply Machine Learning to own data
Learn with real data: Many practical examples (spam filter, is fungus edible or poisonous etc. …)
Use popular tools like Sklearn, and Caret
Who this course is for
Developers interested in Machine Learning
Join the community of
4500 happy students
SINGLE COURSE
ACCESS
Save $60
$199 $260
Access to this course only

DAYS
MONEY BACK
GUARANTEE
ALL COURSE
ACCESS
Low Monthly Price
$19.99/ Month
Access to this course and all other courses